Plant Transcription Factor Database
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G35900.1
Common Nameatbzip14, BZIP14, F4B14.170, FD, FD-1, T19K4.30
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 285aa    MW: 31377.4 Da    PI: 10.9063
Description bZIP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G35900.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       bZIP_1   5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelkkev 56 
                  +r +r++kNRe+A rsR+RK+a++ eLe +v+ L+aeN +Lk + ++lk  +
                  699********************************************99655 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003386.3E-11210274IPR004827Basic-leucine zipper domain
PROSITE profilePS5021711.254214264IPR004827Basic-leucine zipper domain
SuperFamilySSF579593.06E-11216264No hitNo description
CDDcd147072.32E-27216270No hitNo description
Gene3DG3DSA: hitNo description
PfamPF001701.8E-13216265IPR004827Basic-leucine zipper domain
PROSITE patternPS000360219234IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009911Biological Processpositive regulation of flower development
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:2000028Biological Processregulation of photoperiodism, flowering
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0043621Molecular Functionprotein self-association
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000293anatomyguard cell
PO:0009009anatomyplant embryo
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
Sequence ? help Back to Top
Protein Sequence    Length: 285 aa     Download sequence    Send to blast
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G35900-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Highly expressed in shoot apex. {ECO:0000269|PubMed:16099979, ECO:0000269|PubMed:16099980}.
Functional Description ? help Back to Top
Source Description
TAIRbZIP protein required for positive regulation of flowering. Mutants are late flowering. FD interacts with FT to promote flowering.Expressed in the shoot apex in floral anlagen, then declines in floral primordia.
UniProtTranscription factor required for the transition to flowering promoted by FT. {ECO:0000269|PubMed:16099979, ECO:0000269|PubMed:16099980}.
Function -- GeneRIF ? help Back to Top
  1. FD, preferentially expressed in the shoot apex required for FT to promote flowering
    [PMID: 16099979]
  2. a complex of FT and FD proteins in turn can activate floral identity genes such as APETALA1
    [PMID: 16099980]
  3. The specification of flower and inflorescence meristems requires the combined activities of FT-FD and STM.
    [PMID: 20937733]
  4. the early flowering allele of FLH requires the floral integrator FD to accelerate flowering.
    [PMID: 23667042]
  5. Floral repressor BFT delays flowering by competing with FT for FD binding under high salinity.
    [PMID: 23935007]
  6. (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions
    [PMID: 25661797]
Cis-element ? help Back to Top
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G22540 (R), AT5G10140 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G69120(A)
Interaction ? help Back to Top
Source Intact With
IntActSearch Q84JK2
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G35900
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB1058180.0AB105818.1 Arabidopsis thaliana FD mRNA for bZIP transcription factor, complete cds, cultiva:Columbia.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_195315.30.0Basic-leucine zipper (bZIP) transcription factor family protein
SwissprotQ84JK20.0FD_ARATH; Protein FD
TrEMBLA0MFC31e-176A0MFC3_ARATH; Putative uncharacterized protein (Fragment)
STRINGAT4G35900.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP8739610
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
  3. Bensmihen S, et al.
    The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis.
    Plant Cell, 2002. 14(6): p. 1391-403
  4. Hepworth SR,Valverde F,Ravenscroft D,Mouradov A,Coupland G
    Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs.
    EMBO J., 2002. 21(16): p. 4327-37
  5. Jack T
    Molecular and genetic mechanisms of floral control.
    Plant Cell, 2004. 16 Suppl: p. S1-17
  6. Michaels SD,Himelblau E,Kim SY,Schomburg FM,Amasino RM
    Integration of flowering signals in winter-annual Arabidopsis.
    Plant Physiol., 2005. 137(1): p. 149-56
  7. Abe M, et al.
    FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
    Science, 2005. 309(5737): p. 1052-6
  8. Wigge PA, et al.
    Integration of spatial and temporal information during floral induction in Arabidopsis.
    Science, 2005. 309(5737): p. 1056-9
  9. Teper-Bamnolker P,Samach A
    The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
    Plant Cell, 2005. 17(10): p. 2661-75
  10. Searle I, et al.
    The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.
    Genes Dev., 2006. 20(7): p. 898-912
  11. Helliwell CA,Wood CC,Robertson M,James Peacock W,Dennis ES
    The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex.
    Plant J., 2006. 46(2): p. 183-92
  12. Jaeger KE,Graf A,Wigge PA
    The control of flowering in time and space.
    J. Exp. Bot., 2006. 57(13): p. 3415-8
  13. Kobayashi Y,Weigel D
    Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering.
    Genes Dev., 2007. 21(19): p. 2371-84
  14. Alexandre CM,Hennig L
    FLC or not FLC: the other side of vernalization.
    J. Exp. Bot., 2008. 59(6): p. 1127-35
  15. Li C,Dubcovsky J
    Wheat FT protein regulates VRN1 transcription through interactions with FDL2.
    Plant J., 2008. 55(4): p. 543-54
  16. Castillejo C,Pelaz S
    The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering.
    Curr. Biol., 2008. 18(17): p. 1338-43
  17. Notaguchi M, et al.
    Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering.
    Plant Cell Physiol., 2008. 49(11): p. 1645-58
  18. Koornneef M,Hanhart CJ,van der Veen JH
    A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.
    Mol. Gen. Genet., 1991. 229(1): p. 57-66
  19. Greenup A,Peacock WJ,Dennis ES,Trevaskis B
    The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
    Ann. Bot., 2009. 103(8): p. 1165-72
  20. Jang S,Torti S,Coupland G
    Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis.
    Plant J., 2009. 60(4): p. 614-25
  21. Yant L,Mathieu J,Schmid M
    Just say no: floral repressors help Arabidopsis bide the time.
    Curr. Opin. Plant Biol., 2009. 12(5): p. 580-6
  22. Smith HM,Ung N,Lal S,Courtier J
    Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
    J. Exp. Bot., 2011. 62(2): p. 583-93
  23. D'Aloia M, et al.
    Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF.
    Plant J., 2011. 65(6): p. 972-9
  24. Pazhouhandeh M,Molinier J,Berr A,Genschik P
    MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(8): p. 3430-5
  25. Benlloch R, et al.
    Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1.
    Plant J., 2011. 67(6): p. 1094-102
  26. Taoka K, et al.
    14-3-3 proteins act as intracellular receptors for rice Hd3a florigen.
    Nature, 2011. 476(7360): p. 332-5
  27. Hanano S,Goto K
    Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression.
    Plant Cell, 2011. 23(9): p. 3172-84
  28. Imura Y, et al.
    CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis.
    Plant Cell Physiol., 2012. 53(2): p. 287-303
  29. Huang NC,Jane WN,Chen J,Yu TS
    Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis.
    Plant J., 2012. 72(2): p. 175-84
  30. Jaeger KE,Pullen N,Lamzin S,Morris RJ,Wigge PA
    Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis.
    Plant Cell, 2013. 25(3): p. 820-33
  31. Celesnik H,Ali GS,Robison FM,Reddy AS
    Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time.
    Biol Open, 2013. 2(4): p. 424-31
  32. Seedat N,Dinsdale A,Ong EK,Gendall AR
    Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
    J. Exp. Bot., 2013. 64(10): p. 2767-78
  33. Ryu JY, et al.
    The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity.
    Mol Plant, 2014. 7(2): p. 377-87
  34. Kawamoto N,Sasabe M,Endo M,Machida Y,Araki T
    Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation.
    Sci Rep, 2015. 5: p. 8341
  35. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  36. Sanda SL,Amasino RM
    Interaction of FLC and late-flowering mutations in Arabidopsis thaliana.
    Mol. Gen. Genet., 1996. 251(1): p. 69-74
  37. Haung MD,Yang CH
    EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development.
    Plant Cell Physiol., 1998. 39(4): p. 382-93